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Envelope solitons in inhomogeneous media 

J J E Herrera 
Centro de Estudios Nucleares, Universidad Nacional Aut6noma de Mtxico, Circuit0 
Exterior, CU, 04510 MCxico, DF 

Received 1 June 1983 

Abstract. A search is made for a transformation that reduces the nonlinear Schrodinger 
equation, when an inhomogeneous medium is considered, to the usual one. It is found 
that such a transformation can be found for certain quadratic inhomogeneities. 

1. Introduction 

The study of the propagation of nonlinear waves in dispersive and inhomogeneous 
media is of practical interest in a wide range of plasma phenomena, as well as in other 
branches of physics. 

When an almost monochromatic wave is considered in a strongly dispersive, weakly 
nonlinear, and nonuniform medium, a nonlinear Schrodinger equation arises (Chen 
and Liu 1978). If the density profile, in units of the unperturbed density no, is taken 
as n ( x )  = 1 + s ( x ) ,  where s ( x )  is an arbitrary inhomogeneity, we get in dimensionless 
units 

iq, + qxx + (141’ - s ( x ) ) q  = 0. (1.1) 

If the medium were homogeneous, i.e. s ( x )  = 0, then (1.1) would be the usual nonlinear 
Schrodinger equation ( NLS), which has multisoliton solutions, and whose initial value 
problem may be solved through the inverse scattering method (Zakharov and Shabat 
1972). Chen and Liu (1976, 1978) have found that if s ( x )  is linear, the inverse 
scattering method is still applicable, and furthermore, that for s ( x )  = L( t )  + x M ( t )  in 
general, it is possible to find a transformation that reduces (1.1) to the usual NLS. The 
slope of the inhomogeneity accelerates the solitons as classical particles. This result 
may be used to study the behaviour of a single soliton in an arbitrary inhomogeneity, 
provided its width is much smaller than the scale of the inhomogeneity. This is clear, 
since under such adiabatic approximation, the soliton essentially feels a linear density 
profile at a given time t. 

If s ( x )  is complex, collisional damping is also taken into account by the imaginary 
part. The propagation of a single soliton in this case has been studied numerically for 
a linear inhomogeneity (Morales and Lee 1974), and analytically for a parabolic density 
profile (Gupta et aI 1978). In the latter work it was found that, for a certain relation 
between the quadratic term and the damping coefficient, the equation can be solved 
exactly. 

The purpose of this work is to  study under what circumstances it is possible to find 
a transformation that reduces (1.1) to the usual NLS, given an arbitrary inhomogeneity 
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s(x) .  The result of Chen and Liu (1978) is obtained as a particular case. In 0 2, a 
transformation is proposed that yields a set of partial differential equations. It is shown 
from these equations that the most general form of s(x)  that the transformation admits 
is a quadratic one. Some examples are shown. Section 3 is devoted to concluding 
remarks. 

2. The transformation 

We wish to find a transformation such that (1.1) may take the form 

iq, +q,, +([ql'- s (x))q =[a( iu ,+ uyy + I u / ' u )  + F l ( a ,  A)u, +FA&,  A, s)uleA = 0, 

where a = a ( y , r ) ,  u=u(y,r)andA=A(y,r),sothatbyimposingFl=O=FZwemay 
arrive at the reduction we are looking for. With this in mind, we propose 

(2.1) 

(2.2) q(x, t )  = a ' 1 3 ( y ,  .)u(y, 7) e 

x = P ( Y ,  T), t = Y ( Y ,  T), (2.3) 

A ( Y , ~ )  

and 

where a,p, y and A are to be determined by s(x). Since we ignore the forms of p 
and y, let us take 

a / a x = ( ~ ~ / ~ a / a y + ~ ( ( ~ ) a / a r ,  (2.4a) 

a lar  = & ( a )  a / a y + a 2 1 3  alar. (2.4b) 

When this transformation is applied, (2.1) will include the undesired term 
6Za 1/3 U,, exp(A), which means we must take 6 ( a )  = 0 from the very beginning. Thus, 
by inverting (2.4) we find that 

P y = a  1 Y y  = 0 ,  p = - a - l  &(U), y, = (2.5) -1 /3  

Imposing Fl = 0 and F2 = 0, we get 

a y  - i a 4 / 3 ~ ,  + 2aAY = 0 ,  (2.6) 
and 

( a  i A , + A y , - A ~ ) + f i a , + ~ a y y - ( ~ a - ~ a y - ~ i ~ T a 1 ~ 3 ) a y - a ' ~ 3 s  = O ,  (2.7) 

respectively. These two equations must be solved together with (2.5). From the latter, 
we find that yyr  = a-5'3ay = 0, so the only nontrivial case we are left with is ay = 0. 
Thus, (2.6) and (2.7) become 

(2.8) 

(2.9) 

p=a- ' /3y+c(.)  (2.10) 

A =1. 1 /3  
y 21a P r 9  

A =iA -iA2-Ia-l  d a / d ~ - i a - ~ / ~ s .  
Y Y  

On the other hand, py may be integrated, 

where C(T) is an arbitrary function of T. Substituting (2.8) and (2.10) in (2.9), it is 
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(2.11) 

This means that syyy  = 0, so the most general form that s may have is the one of a 
quadratic polynomial, 

s ( x )  = L ( t )  + M ( r ) x  + N(t)x2  = L [ y ( ~ ) l + M [ y ( ~ ) ] p ( y ,  7 )  + N [ y ( ~ ) ] p ~ ( y ,  7). (2.12) 

This may be also seen directly from the fact that p,, = 0. Thus, (2.10) may be used 
to find s,, and (2.1 1) yields the following set of ordinary differential equations in a ( ~ )  
and c ( r ) :  

d2a/d.r2-$a-1(da/dT)2- 12a-1'3N = O ,  (2.13) 

&a d 2 ~ / d ~ 2 + f ( d a / d ~ ) d ~ / d r + a - 1 ' 3 ( M + 2 ~ N )  = O .  (2.14) 

If N = 0, then a may be taken to be 1. As a consequence, t = y = T ,  and (2.14) yields 

C( t )  = -2 IC: Io" M( t " )  dt" dt'. (2.15) 

This is the result previously obtained by Chen and Liu (1978). 

into 
In order to solve (2.13) for the general case, we may take Y = a"'. It transforms 

(2.16) Y3 d2 Y/dT2 = 4N, 

which may be solved by a new change of variable 

U = d2 Y/dT2, Y = f U T 2 ,  (2.17) 

where integration constants have been taken to be zero for simplicity. More general 
solutions may be obtained otherwise. In this case, if N is a constant, we get the 
following solutions for a, p and y :  

(y = (2N)3'4T3/2 (2.18) 

p = ( 2 ~ ) - 1 / ~ ~ - 1 / 2 ~ +  c ( T ) ,  (2.19) 

y = ( 2 ~ ) - " ~  In( 7). (2.20) 

d2C/dT2+ T - " ~  ~ C / ~ T + ~ T - ~ C = - T - ~ M ( ~ ) N - ' .  (2.21) 

The form of C ( T )  should be obtained by solving (2.14), which now has the form 

If M ( y )  = 0, one may take the trivial solution c = 0. The case M (  y )  # 0 need not 
bother us, since it is always possible to reduce s(x)  to the form s ( x )  = L ( t ) + N x *  by 
choosing the origin appropriately. The form of A may be obtained integrating (2.8): 

(2.22) A = -1' 8 1 T - ' y 2 +  T ( r ) ,  

where T ( T )  is a function of T which depends on c ( T ) .  If it is taken to be zero, as in 
this case, T (  T )  = 0. 

Solving (2.16) for the more general case in which N ( y )  is not a constant may prove 
to be extremely difficult; however, some cases in which this is readily possible may be 
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easily identified. For instance, if N [  y (  T ) ]  = ( k4’3/2)74n+6, where k is an arbitrary 
constant and n is an integer, 

, (2.23) 

r=[k-2/3/(-2(n + 2 ) +  l ) l T - * ( n + * ) + l .  (2.25) 

= k T 3 ( n + 2 )  

p = k-1/3 T - ( n + 2 ) + C ( T ) ,  (2.24) 

In this case again, if the origin is chosen in such a way that M (  y )  = 0, we may take 
c=O. From (2.8), 

(2.26) 

It is also possible to find the forms of M ( t )  and N ( t )  that may allow the reduction 
(2.1), starting with a given ~ ( 7 ) .  The transformation /3 is found from (2.10), and y 
from (2.5). Then N ( t )  is obtained from (2.13) and M ( t )  from (2.14), where we also 
need to choose ~ ( 7 ) .  

A = -$(n + 2)-’y2. 

3. Conclusion 

It has been found that (1.1) can be reduced to the usual NLS equation using a 
transformation of the form (2.2) if the inhomogeneity s(x)  is quadratic. The reason 
why it is not possible to consider more general forms of s(x)  is that 8 ( a )  = O  in (2.4a), 
and this implies subsequently that yr = 0, then pry = 0 and finally sryp = 0. 

The problem of finding the appropriate transformation is essentially reduced to 
the one of solving (2.13) and (2.14). 

A different approach to the problem addressed in this work may be to follow the 
ideas of Balakrishnan (1982), where the application of the inverse scattering method 
is attempted, by extending the AKNS formalism (Ablowitz et a1 1974). The main idea 
is to allow the eigenvalue 5 to depend upon .x and t. It may be readily seen that if 
f = f (  r ) ,  it will be possible to deal with linear inhomogeneities. This is essentially the 
result of Chen and Liu (1976). If more general forms of s(x) are considered, however, 
5 must have a full dependence upon x and t. 
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